$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: November 1st, 2019

Math 104 Assignment 8

  1. Sequential characterization of continuity

    Prove that a function $f : X \to Y$ is continuous if and only if for every convergent sequence $(a_n)_n$ in $X$, the sequence $(f(a_n))_n$ is convergent in $Y$ with \[f\paren{\limni a_n} = \limni f(a_n).\]
  2. A pathological function

    Let $f : [0,1] \to \R$ be defined as follows: \[ f(x) = \begin{cases} 0 & \text{ if } x \notin \Q \\ 1 & \text{ if } x = 0 \\ \frac1q & \text{ if } x = \frac{p}{q} \text{ with } p \in \Z, q \in \N, \text{ and } p, q \text{ have no common factor}.\end{cases}\] (For example, $f(0) = f(1) = 1$, $f(1/2) = 1/2$, $f(1/4) = f(3/4) = 1/4$.)

    Prove that $f$ is continuous at every irrational number, but discontinuous at every rational number.

  3. Equivalent metrics

    Let $M$ be a set. Two metrics $d$ and $d'$ on $M$ are said to be strongly equivalent if there are constants $c, C \in \R_{\gt0}$ so that for every $x, y \in M$, \[cd(x, y) \leq d'(x, y) \leq Cd(x, y).\]

    Now, let $d$ and $d'$ be strongly equivalent metrics on $M$.

    1. Show that $U \subseteq M$ is open with respect to $d$ if and only if it is open with respect to $d'$.
    2. Suppose that $X$ is another set, with strongly equivalent metrics $d_X$ and $d_X'$. Show that $f : M \to X$ is continuous with respect to $d$ and $d_X$ if and only if it is continuous with respect to $d'$ and $d_X'$.
  4. Continuous functions on dense sets

    Suppose that $f, g : X \to Y$ are continuous, and $E \subseteq X$ is dense.

    1. Prove that $f(E)$ is dense in $f(X)$.
    2. Prove that if $f(x) = g(x)$ for all $x \in E$, then $f(x) = g(x)$ for all $x \in X$. (Thus the value of a continuous function is determined by its values on a dense set.)
  5. Uniformly continuous functions have extensions

    Again, suppose that $E \subseteq X$ is dense, and suppose that $f : E \to Y$ is uniformly continuous on $E$. Suppose also that $Y$ is complete.

    1. Show that if $(x_n)_n$ is a Cauchy sequence in $E$, then $(f(x_n))_n$ is Cauchy in $Y$.
    2. Show that if $(x_n)_n$ and $(a_n)_n$ are sequences in $E$ converging to $x \in X$, then $(f(x_n))_n$ and $(f(a_k))_k$ converge in $Y$ to the same limit.
    3. Prove that there is a uniformly continuous function $\tilde f : X \to Y$ so that $\tilde f(x) = f(x)$ for all $x \in E$. (This function is called a continuous extension of $f$.)
    4. Show that if $f$ is merely assumed to be continuous, it may not have a continuous extension.

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.