$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} $$

Warning: include_once(../../../../../site/defns.php): Failed to open stream: No such file or directory in /home/ilc/repos/work/teaching/2021/spring/104/www/sidebar.php on line 1

Warning: include_once(): Failed opening '../../../../../site/defns.php' for inclusion (include_path='.:/usr/share/php') in /home/ilc/repos/work/teaching/2021/spring/104/www/sidebar.php on line 1

Useful links

Office hours:

  • Mondays 9:00-10:00
  • Wednesdays 14:00-16:00

Email

GSI:

Rahul Dalal
  • M 10:30-12:30
  • TTh 17:30-19:30
  • WF 11:00-13:00

Exams

Let $(\mathcal M, d)$ be a metric space.

  1. Suppose that $K_1, K_2 \subseteq M$ are compact. Which is the weakest assumption below which guarantees that $K_1 \cup K_2$ is compact?

    1. $K_1\cap K_2 \neq \emptyset$.
    2. $M = \R^n$ for some $n \in \N$.
    3. $K_1 \subseteq K_2$.
    4. No further assumption.
  2. Which of the following is the statement that the sequence $(a_n)_n$ does not converge?

    1. $\forall L \in M \, \forall r \gt 0 \, \exists N \, \forall n \gt N, \, d(a_n, L) \geq r$.
    2. $\exists L \in M \, \exists r \gt 0 \, \forall N \, \exists n \gt N, \, d(a_n, L) \geq r$.
    3. $\forall L \in M \, \exists r \gt 0 \, \forall N \, \exists n \gt N, \, d(a_n, L) \geq r$.
    4. $\exists L \in M \, \forall r \gt 0 \, \exists N \, \forall n \gt N, \, d(a_n, L) \geq r$.
  3. If $E \subseteq M$ is not compact, then no infinite open cover of $E$ has a finite subcover.

    1. True.
    2. False.
  4. If $(x_n)_n$ is a sequence which takes on only finitely many distinct values, it converges.

    1. True.
    2. False.