$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} $$

Warning: include_once(../../../../../site/defns.php): Failed to open stream: No such file or directory in /home/ilc/repos/work/teaching/2021/spring/104/www/sidebar.php on line 1

Warning: include_once(): Failed opening '../../../../../site/defns.php' for inclusion (include_path='.:/usr/share/php') in /home/ilc/repos/work/teaching/2021/spring/104/www/sidebar.php on line 1

Useful links

Office hours:

  • Mondays 9:00-10:00
  • Wednesdays 14:00-16:00

Email

GSI:

Rahul Dalal
  • M 10:30-12:30
  • TTh 17:30-19:30
  • WF 11:00-13:00

Exams

Let $(X, d_X)$ and $(Y, d_Y)$ be metric spaces.

  1. Suppose that $E \subseteq X$ and $x \in E \setminus E'$. Let $f : E \to Y$. The statement "$f$ is continuous at $x$" is...

    1. ...always true.
    2. ...nonsense since it only makes sense for $x \in E'$.
    3. ...nonsense since it only makes sense for $x \in E' \cap E$.
    4. ...potentially true or false.
  2. Suppose that $g : \Z \to \R$ is given by \[g(z) = \begin{cases} 0 & \text{ if } z = 0 \\ \frac1{z^2} & \text{ otherwise.} \end{cases}\] Then $g$ is continuous...

    1. ...everywhere.
    2. ...everywhere except $0$.
    3. ...nowhere.
    4. Mu. $g$ is not the type of object for which continuity makes sense, so the question is malformed.
  3. If $X$ is bounded and $g : X \to Y$ is continuous, then $g(X)$ is bounded.

    1. True.
    2. True, provided that $g$ is uniformly continuous.
    3. False.
  4. Let $f : X \to Y$. Suppose $(a_n)_n$, $(b_n)_n$ are sequences in $\R_{\gt0}$ so that $(a_n)_n$ converges to $0$ and if $s, t \in X$ with $d_X(s, t) \lt b_n$ it follows that $d_Y( f(s), f(t) ) \lt a_n$. Which is the strongest true statement below?

    1. If $(b_n)_n$ also converges to zero, then $f$ is continuous.
    2. If $(b_n)_n$ also converges to zero, then $f$ is uniformly continuous.
    3. $f$ is continuous.
    4. $f$ is uniformly continuous.